
Evaluating XPath Queries

Chapter 8

Evaluating XPath Queries

Peter Wood (BBK) XML Data Management 201 / 353

Evaluating XPath Queries

Introduction

When XML documents are small and can fit in memory, evaluating
XPath expressions can be done efficiently
But what if we have very large documents stored on disk?
How should they be stored (fragmented)?
How can we query them efficiently (by reducing the number of
disk accesses needed)?

Peter Wood (BBK) XML Data Management 202 / 353

Evaluating XPath Queries

Fragmentation

A large document will not fit on a single disk page (block)
It will need to be fragmented over possibly a large number of
pages
Updates to the document may result in further fragmentation

Peter Wood (BBK) XML Data Management 203 / 353

Evaluating XPath Queries

Pre-order traversal

Recall pre-order traversal of a tree:
To traverse a non-empty tree in pre-order, perform the following
operations recursively at each node, starting with the root node:

1 Visit the node
2 Traverse the root nodes of subtrees of the node from left to right

Peter Wood (BBK) XML Data Management 204 / 353

Evaluating XPath Queries

Fragmentation based on pre-order traversal

A very simple method to store the document nodes on disk is as
follows:

A pre-order traversal of the document, starting from the root,
groups as many nodes as possible within the current page
When the page is full, a new page is used to store the nodes that
are encountered next
and so on, until the entire tree has been traversed

Peter Wood (BBK) XML Data Management 205 / 353

Evaluating XPath Queries

CD library example — first two CDs

Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 353

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 353

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 353

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 353

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 353

Evaluating XPath Queries

Simple XPath queries

Selecting both CDs nodes requires accessing 2 fragments
Evaluating /CD-library/CD/performance requires accessing all 3
fragments
This is very small example, but one can see that such
fragmentation could lead to very bad performance

Two improvements:
I Smart fragmentation: Group those nodes that are often accessed

simultaneously together
I Rich node identifiers: Sophisticated node identifiers reducing the

cost of join operations needed to “stitch” back fragments

Peter Wood (BBK) XML Data Management 207 / 353

Evaluating XPath Queries

Simple XPath queries

Selecting both CDs nodes requires accessing 2 fragments
Evaluating /CD-library/CD/performance requires accessing all 3
fragments
This is very small example, but one can see that such
fragmentation could lead to very bad performance
Two improvements:

I Smart fragmentation: Group those nodes that are often accessed
simultaneously together

I Rich node identifiers: Sophisticated node identifiers reducing the
cost of join operations needed to “stitch” back fragments

Peter Wood (BBK) XML Data Management 207 / 353

Evaluating XPath Queries

Representation on disk

One of the simplest ways to represent an XML document on disk
is to

I Assign an identifier to each node
I Store the XML document as one relation (which may be

fragmented) representing a set of edges

Peter Wood (BBK) XML Data Management 208 / 353

Evaluating XPath Queries

Simple node identfiers
Here node identifiers are simply integers, assigned in some order

p c s p p

C C

L

c m s d m o t d m d

1

2

3 9

8

11 13 18

4 5 6 7 10 12 14 15 16 17 19 20

Peter Wood (BBK) XML Data Management 209 / 353

Evaluating XPath Queries

The Edge relation
pid cid clabel
- 1 CD-library
1 2 CD
2 3 performance
3 4 composer
3 5 composition
3 6 soloist
3 7 date
1 8 CD

.

“pid” is the id of the parent node
“cid” is the id of the child node
“clabel” is the element name of the child node
(attributes and text nodes can be handled similarly)

Peter Wood (BBK) XML Data Management 210 / 353

Evaluating XPath Queries

Processing XPath queries

//composer: can be evaluated by a simple lookup

πcid(σclabel=‘composer ′(Edge))

/CD-library/CD: requires one join

πcid((σclabel=‘CD−library ′(Edge)) oncid=pid (σclabel=‘CD′(Edge)))

Peter Wood (BBK) XML Data Management 211 / 353

Evaluating XPath Queries

Processing XPath queries

//composer: can be evaluated by a simple lookup

πcid(σclabel=‘composer ′(Edge))

/CD-library/CD: requires one join

πcid((σclabel=‘CD−library ′(Edge)) oncid=pid (σclabel=‘CD′(Edge)))

Peter Wood (BBK) XML Data Management 211 / 353

Evaluating XPath Queries

Processing XPath queries (2)

/CD-library//composer: many joins potentially needed

Let A := (σclabel=‘CD−library ′(Edge))

Let B := (σclabel=‘composer ′(Edge))

/CD-library/composer πcid(A oncid=pid B)
/CD-library/*/composer πcid(A oncid=pid Edge oncid=pid B)
/CD-library/*/*/composer . . .
.

This assumes the query processor does not have any schema
information available which might constrain where composer

elements are located

Peter Wood (BBK) XML Data Management 212 / 353

Evaluating XPath Queries

Element-partitioned Edge relations

A simple improvement is to use element-partitioned Edge
relations
Here, the Edge relation is partitioned into many relations, one for
each element name

CD-library

pid cid
- 1

CD

pid cid
1 2
1 8

performance

pid cid
2 3
8 13
8 18

composer

pid cid
3 4
8 9

Peter Wood (BBK) XML Data Management 213 / 353

Evaluating XPath Queries

Element-partitioned Edge relations (2)

This saves some space (element names are not repeated)
It also reduces the disk I/O needed to retrieve the identifiers of
elements having a given name
However, it does not solve the problem of evaluating queries with
// steps in non-leading positions

Peter Wood (BBK) XML Data Management 214 / 353

Evaluating XPath Queries

Path-partitioned approach to fragmentation

Path-partitioning tries to solve the problem of // steps at arbitrary
positions in a query
This approach uses one relation for each distinct path in the
document, e.g., /CD-library/CD/performance
There is also another relation, called Paths, which contains all the
unique paths

Peter Wood (BBK) XML Data Management 215 / 353

Evaluating XPath Queries

Path-partitioned storage

/CD-library:
pid cid
- 1

/CD-library/CD:
pid cid
1 2
1 8

/CD-library/CD/composer:
pid cid
8 9

/CD-library/CD/performance/composer:
pid cid
3 4

Paths:

path
/CD-library

/CD-library/CD

/CD-library/CD/performance

/CD-library/CD/performance/composer

. . .

Peter Wood (BBK) XML Data Management 216 / 353

Evaluating XPath Queries

Path-partitioned storage (2)

Based on a path-partitioned store, a query such as
//CD//composer can be evaluated in two steps:

I Scan the Paths relation to identify all the paths matching the given
XPath query

I For each such path, scan the corresponding path-partitioned
relation

So for //CD//composer, the paths would be
I /CD-library/CD/composer
I /CD-library/CD/performance/composer

So only these two relations need to be scanned

Peter Wood (BBK) XML Data Management 217 / 353

Evaluating XPath Queries

Path-partitioned storage (3)

The evaluation of XPath queries with many branches will still
require joins across the relations
However, the evaluation of // steps is simplified, thanks to the first
processing step, performed on the path relation
For very structured data, the path relation is typically small
Thus, the cost of the first processing step is likely negligible, while
the performance benefits of avoiding numerous joins are quite
important
However, for some data, the path relation can be large, and in
some cases, even larger than the data itself

Peter Wood (BBK) XML Data Management 218 / 353

Evaluating XPath Queries

Node identifiers

Node identifiers are needed to indicate how nodes are related to
one another in an XML tree
This is particularly important when the data is fragmented and we
need to reconnect children with their parents
However, it is often even more useful to be able to identify other
kinds of relationships between nodes, just by looking at their
identifiers
This means we need to use identifiers that are richer than simple
consecutive integers
We will see later how this information can be used in query
processing

Peter Wood (BBK) XML Data Management 219 / 353

Evaluating XPath Queries

Region-based identifers

The region-based identifier scheme assigns to each XML node n
a pair of integers
The pair consists of the offset of the node’s start tag, and the
offset of its end tag
We denote this pair by (n.start ,n.end)
Consider the following offsets of tags:

0 30 50 90

<a>

the region-based identifier of the <a> element is the pair (0,90)
the region-based identifier of the element is the pair (30,50)

Peter Wood (BBK) XML Data Management 220 / 353

Evaluating XPath Queries

Using region-based identifiers

Comparing the region-based identifiers of two nodes n1 and n2
allows for deciding whether n1 is an ancestor of n2

Observe that this is the case if and only if:
I n1.start < n2.start , and
I n1.end > n2.end

There is no need to use byte offsets:
I (Start tag, end tag). Count only opening and closing tags (as one

unit each) and assign the resulting counter values to each element
I (Pre, post). Pre-order and post-order index (see next slides)

Region-based identifiers are quite compact, as their size only
grows logarithmically with the number of nodes in a document

Peter Wood (BBK) XML Data Management 221 / 353

Evaluating XPath Queries

Post-order traversal

Recall post-order traversal of a tree:
To traverse a non-empty tree in post-order, perform the following
operations recursively at each node, starting with the root node:

1 Traverse the root nodes of subtrees of the node from left to right
2 Visit the node

Peter Wood (BBK) XML Data Management 222 / 353

Evaluating XPath Queries

Example of (pre, post) node identifiers

p c s p p

C C

L

c m s d m o t d m d

(1,20)

(2,6)

(3,5) (9,8)

(8,19)

(11,10) (13,15) (18,18)

(4,1) (5,2) (6,3) (7,4) (10,7) (12,9) (14,11) (15,12) (16,13) (17,14) (19,16) (20,17)

Peter Wood (BBK) XML Data Management 223 / 353

Evaluating XPath Queries

Using (pre, post) identifiers to find ancestors

The same method as for other region-based identifiers allows us
to decide, for two nodes n1 and n2, whether n1 is an ancestor of n2

As before, this is the case if and only if:
I n1.pre < n2.pre, and
I n1.post > n2.post

where ni .pre and ni .post are the pre-order and post-order
numbers assigned to node ni , respectively

Peter Wood (BBK) XML Data Management 224 / 353

Evaluating XPath Queries

Using (pre, post) identifiers to find parents

One can add another number to a node identifier which indicates
the depth of the node in the tree
The root is assigned a depth of 1; the depth increases as we go
down the tree
Using (pre,post ,depth), we can decide whether node n1 is a
parent of node n2

Node n1 is a parent of node n2 if and only if
I n1 is an ancestor of n2 and
I n1.depth = n2.depth − 1

Peter Wood (BBK) XML Data Management 225 / 353

Evaluating XPath Queries

Dewey-based identifiers

These identifiers use the principal of the Dewey classification
system used in libraries for decades
To get the identifier of a child node, one adds a suffix to the
identifier of its parent (including a separator)
e.g., if the parent’s identifier is 1.2.3 and the child is the second
child of this parent, then its identifier is 1.2.3.2

Peter Wood (BBK) XML Data Management 226 / 353

Evaluating XPath Queries

Example of Dewey-based identifiers

p c s p p

C C

L

c m s d m o t d m d

1

1.1

1.1.1 1.2.1

1.2

1.2.2 1.2.3 1.2.4

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.2.1.1 1.2.2.1 1.2.3.1 1.2.3.2 1.2.3.3 1.2.3.4 1.2.4.1 1.2.4.2

Peter Wood (BBK) XML Data Management 227 / 353

Evaluating XPath Queries

Using Dewey-based identifiers
Let n1 and n2 be two identifiers, of the form:
n1 = x1.x2.xm and n2 = y1.y2.yn

The node identified by n1 is an ancestor of the node identified by
n2 if and only if n1 is a prefix of n2

When this is the case, the node identified by n1 is the parent of
the node identified by n2 if and only if n = m + 1
Dewey IDs allow finding other relationships such as
preceding-sibling and preceding (respectively, following-sibling,
and following)
The node identified by n1 is a preceding sibling of the node
identified by n2 if and only if

1 x1.x2.xm−1 = y1.y2.yn−1 and
2 xm < yn

The main drawback of Dewey identifiers is their length: the length
is variable and can get large

Peter Wood (BBK) XML Data Management 228 / 353

Evaluating XPath Queries

Structural identifiers and updates

Consider a node with Dewey ID 1.2.2.3
I Suppose we insert a new first child for node 1.2
I Then the ID of node 1.2.2.3 becomes 1.2.3.3

In general:
I Offset-based identifiers need to be updated as soon as a character

is inserted or removed in the document
I (start, end), (pre, post), and Dewey IDs need to be updated when

the elements of the documents change
I It is possible to avoid re-labelling on deletions, but gaps will appear

in the labelling scheme
I Re-labelling operations are quite expensive

Peter Wood (BBK) XML Data Management 229 / 353

Evaluating XPath Queries

Tree pattern query evaluation

Assume we have element-partitioned relations using (pre, post)
identifiers
Assume we want to evaluate a tree pattern query
One way is to decompose the query into its “basic” patterns:

I Each basic pattern is just a pair of nodes
I connected by a child edge or a descendant edge

We particularly want an efficient way of evaluating basic patterns
that use the descendant operator

Peter Wood (BBK) XML Data Management 230 / 353

Evaluating XPath Queries

Tree Pattern Example

day month

date date title

magazine

bookstore

�
��

�
��

H
HH

H
HH

Peter Wood (BBK) XML Data Management 231 / 353

Evaluating XPath Queries

Decomposed Tree Pattern Example

bookstore

magazine

magazine

date

magazine

title

date

day

date

month

Peter Wood (BBK) XML Data Management 232 / 353

Evaluating XPath Queries

Example tree with (pre, post) identifiers
(Taken from the book “Web Data Management”)

b d c b d

b b f

a

e g e g e g g

(1,16)

(2,5)

(3,3) (6,4)

(7,14)

(8,8) (11,12) (15,13)

(16,15)

(4,1) (5,2) (9,6) (10,7) (12,9) (13,10) (14,11)

Peter Wood (BBK) XML Data Management 233 / 353

Evaluating XPath Queries

Element-partitioned relations for example

a
pre post
1 16

b
pre post
2 5
3 3
7 14

11 12

c
pre post
8 8

d
pre post
6 4
15 13

e
pre post
4 1
9 6
12 9

f
pre post
16 15

g
pre post
5 2

10 7
13 10
14 11

Peter Wood (BBK) XML Data Management 234 / 353

Evaluating XPath Queries

Evaluation of descendant patterns

Assume we want to evaluate the basic pattern corresponding to
b//g

This pattern may need to be joined to the results calculated for
other basic patterns
So, in general, we need to find all pairs (x , y) of nodes where

I x is an element with name b
I y is an element with name g
I y is a descendant of x

Peter Wood (BBK) XML Data Management 235 / 353

Evaluating XPath Queries

Evaluation of descendant patterns (2)

We could take every node ID from the b relation and compare it to
every node ID from the g relation
Each time we can test whether the g-node is a descendant of the
b-node using the (pre, post) identifiers
But this method will take time proportional to n ×m, if there are n
b-nodes and m g-nodes
In particular, one of the relations is scanned many times
This is similar to a nested-loops implementation of a relational
join, which is known to be inefficient
Can we do better?

Peter Wood (BBK) XML Data Management 236 / 353

Evaluating XPath Queries

Stack-based join algorithm

We will look at an elegant method for evaluation of descendant
patterns that uses an auxiliary stack
This is called the stack-based join (SBJ) algorithm
SBJ reads each ID from each relation only once
SBJ assumes that the IDs in each relation are sorted, essentially
by their pre-order values (as in the earlier slide)
We will illustrate the method by example

Peter Wood (BBK) XML Data Management 237 / 353

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5) (5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)

Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 353

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)

(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack

Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 353

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)

(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack

So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 353

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)

(3,3)

(10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (2)
(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output

(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack

The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples
Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack

Peter Wood (BBK) XML Data Management 239 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (2)

(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack
The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples

Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack

Peter Wood (BBK) XML Data Management 239 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (2)

(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack
The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples
Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack
Peter Wood (BBK) XML Data Management 239 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (3)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

A descendant ID which has been compared with ancestor IDs on
the stack and has produced output tuples, can be discarded
Now the g ID (10,7) encounters no matches on the stack
Moreover, (10,7) occurs in the document after the nodes on the
stack
Therefore, no descendant node ID yet to be examined can have
ancestors on this stack
This is because the input g IDs are sorted

Therefore, at this point, the stack is emptied

Peter Wood (BBK) XML Data Management 240 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (3)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)

Stack

Output
(3,3), (5,2)
(2,5), (5,2)

A descendant ID which has been compared with ancestor IDs on
the stack and has produced output tuples, can be discarded
Now the g ID (10,7) encounters no matches on the stack
Moreover, (10,7) occurs in the document after the nodes on the
stack
Therefore, no descendant node ID yet to be examined can have
ancestors on this stack
This is because the input g IDs are sorted
Therefore, at this point, the stack is emptied

Peter Wood (BBK) XML Data Management 240 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(11,12)
(7,14)

Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This which produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)
(11,12) (14,11)
b IDs g IDs

(11,12)

(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack

followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This which produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)

The next descendant ID is (10,7)
This which produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)

This which produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)
(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This which produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)

This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)

(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output

The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)

(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)

This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 353

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 353

Evaluating XPath Queries

Other approaches

The stack-based join algorithm is as efficient as possible for single
descendant basic patterns
But an overall algorithm for tree pattern evaluation still has to join
the answers from basic patterns back together
The size of intermediate results can be unnecessarily large
Another approach is to evaluate the entire pattern in one operation
One algorithm for this is called holistic twig join

Peter Wood (BBK) XML Data Management 243 / 353

Evaluating XPath Queries

Summary
We considered some issues for dealing with querying large XML
documents
These included methods for fragmenting documents
and efficient evaluation methods, particularly for
ancestor-descendant basic patterns
For more information, see Chapter 4 on “XML Query Evaluation”
in the book “Web Data Management”
The original stack-based join algorithm is from S. Al-Khalifa, H.V.
Jagadish, J.M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
“Structural joins: A primitive for efficient XML query pattern
matching.” In Proc. Int. Conf. on Data Engineering (ICDE), 2002.
Holistic twig join is described in N. Bruno, N. Koudas, and D.
Srivastava. “Holistic twig joins: optimal XML pattern matching.” In
Proc. ACM Int. Conf. on the Management of Data (SIGMOD),
2002.
Peter Wood (BBK) XML Data Management 244 / 353

